43 research outputs found

    Collective motion, sensor networks, and ocean sampling

    Get PDF
    Author Posting. © IEEE, 2007. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in Proceedings of the IEEE 95 (2007): 48-74, doi:10.1109/jproc.2006.887295.This paper addresses the design of mobile sensor networks for optimal data collection. The development is strongly motivated by the application to adaptive ocean sampling for an autonomous ocean observing and prediction system. A performance metric, used to derive optimal paths for the network of mobile sensors, defines the optimal data set as one which minimizes error in a model estimate of the sampled field. Feedback control laws are presented that stably coordinate sensors on structured tracks that have been optimized over a minimal set of parameters. Optimal, closed-loop solutions are computed in a number of low-dimensional cases to illustrate the methodology. Robustness of the performance to the influence of a steady flow field on relatively slow-moving mobile sensors is also explored

    Global wealth disparities drive adherence to COVID-safe pathways in head and neck cancer surgery

    Get PDF
    Peer reviewe

    Engineering dynamics: a comprehensive introduction

    No full text

    Dynamic control of autonomous quadrotor flight in an estimated wind field

    No full text
    Abstract — We present a nonlinear, dynamic controller for a 6DOF quadrotor operating in an estimated, spatially varying, turbulent wind field. The quadrotor dynamics include the aerodynamic effects of drag, rotor blade flapping, and induced thrust due to translational velocity and external wind fields. To control the quadrotor we use a dynamic input/output feedback linearization controller that estimates a parametric model of the wind field using a recursive Bayesian filter. Each rotor experiences a possibly different wind field, which introduces moments that are accounted for in the controller and allows flight in wind fields that vary over the length of the vehicle. We add noise to the wind field in the form of Dryden turbulence to simulate the algorithm in two applications: autonomous ship landing and quadrotor proximity flight. I

    Stabilization of planar collective motion: All-to-all communication

    No full text
    This paper proposes a design methodology to stabilize isolated relative equilibria in a model of all-to-all coupled, identical, steered particles moving in the plane at unit speed. Isolated relative equilibria either correspond to parallel motion of all particles with fixed relative spacing or to circular motion of all particles with fixed relative phases. The stabilizing feedbacks derive from Lyapunov functions that prove exponential stability and suggest almost global convergence properties. The results of the paper provide a low-order parametric family of stabilizable collectives that offer a set of primitives for the design of higherlevel tasks at the group level
    corecore